Algorithm

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub yosupo06/Algorithm

:heavy_check_mark: src/math/poly.hpp

Depends on

Verified with

Code

#pragma once

#include "../util/random.hpp"
template <class D> struct Poly {
    V<D> v;
    Poly(const V<D>& _v = {}) : v(_v) { shrink(); }
    void shrink() {
        while (v.size() && !v.back()) v.pop_back();
    }

    int size() const { return int(v.size()); }
    D freq(int p) const { return (p < size()) ? v[p] : D(0); }

    Poly operator+(const Poly& r) const {
        auto n = max(size(), r.size());
        V<D> res(n);
        for (int i = 0; i < n; i++) res[i] = freq(i) + r.freq(i);
        return res;
    }
    Poly operator-(const Poly& r) const {
        int n = max(size(), r.size());
        V<D> res(n);
        for (int i = 0; i < n; i++) res[i] = freq(i) - r.freq(i);
        return res;
    }
    Poly operator*(const Poly& r) const { return {multiply(v, r.v)}; }
    Poly operator*(const D& r) const {
        int n = size();
        V<D> res(n);
        for (int i = 0; i < n; i++) res[i] = v[i] * r;
        return res;
    }
    Poly operator/(const D &r) const{
        return *this * r.inv();
    }
    Poly operator/(const Poly& r) const {
        if (size() < r.size()) return {{}};
        int n = size() - r.size() + 1;
        return (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
    }
    Poly operator%(const Poly& r) const { return *this - *this / r * r; }
    Poly operator<<(int s) const {
        V<D> res(size() + s);
        for (int i = 0; i < size(); i++) res[i + s] = v[i];
        return res;
    }
    Poly operator>>(int s) const {
        if (size() <= s) return Poly();
        V<D> res(size() - s);
        for (int i = 0; i < size() - s; i++) res[i] = v[i + s];
        return res;
    }
    Poly& operator+=(const Poly& r) { return *this = *this + r; }
    Poly& operator-=(const Poly& r) { return *this = *this - r; }
    Poly& operator*=(const Poly& r) { return *this = *this * r; }
    Poly& operator*=(const D& r) { return *this = *this * r; }
    Poly& operator/=(const Poly& r) { return *this = *this / r; }
    Poly& operator/=(const D &r) {return *this = *this/r;}
    Poly& operator%=(const Poly& r) { return *this = *this % r; }
    Poly& operator<<=(const size_t& n) { return *this = *this << n; }
    Poly& operator>>=(const size_t& n) { return *this = *this >> n; }

    Poly pre(int le) const {
        return {{v.begin(), v.begin() + min(size(), le)}};
    }
    Poly rev(int n = -1) const {
        V<D> res = v;
        if (n != -1) res.resize(n);
        reverse(res.begin(), res.end());
        return res;
    }
    Poly diff() const {
        V<D> res(max(0, size() - 1));
        for (int i = 1; i < size(); i++) res[i - 1] = freq(i) * i;
        return res;
    }
    Poly inte() const {
        V<D> res(size() + 1);
        for (int i = 0; i < size(); i++) res[i + 1] = freq(i) / (i + 1);
        return res;
    }

    // f * f.inv() = 1 + g(x)x^m
    Poly inv(int m) const {
        Poly res = Poly({D(1) / freq(0)});
        for (int i = 1; i < m; i *= 2) {
            res = (res * D(2) - res * res * pre(2 * i)).pre(2 * i);
        }
        return res.pre(m);
    }
    Poly exp(int n) const {
        assert(freq(0) == 0);
        Poly f({1}), g({1});
        for (int i = 1; i < n; i *= 2) {
            g = (g * 2 - f * g * g).pre(i);
            Poly q = diff().pre(i - 1);
            Poly w = (q + g * (f.diff() - f * q)).pre(2 * i - 1);
            f = (f + f * (*this - w.inte()).pre(2 * i)).pre(2 * i);
        }
        return f.pre(n);
    }
    Poly log(int n) const {
        assert(freq(0) == 1);
        auto f = pre(n);
        return (f.diff() * f.inv(n - 1)).pre(n - 1).inte();
    }
    Poly sqrt(int n) const {
        assert(freq(0) == 1);
        Poly f = pre(n + 1);
        Poly g({1});
        for (int i = 1; i < n; i *= 2) {
            g = (g + f.pre(2 * i) * g.inv(2 * i)) / 2;
        }
        return g.pre(n + 1);
    }

    Poly pow_mod(ll n, const Poly& mod) {
        Poly x = *this, r = {{1}};
        while (n) {
            if (n & 1) r = r * x % mod;
            x = x * x % mod;
            n >>= 1;
        }
        return r;
    }

    friend ostream& operator<<(ostream& os, const Poly& p) {
        if (p.size() == 0) return os << "0";
        for (auto i = 0; i < p.size(); i++) {
            if (p.v[i]) {
                os << p.v[i] << "x^" << i;
                if (i != p.size() - 1) os << "+";
            }
        }
        return os;
    }
};

template <class Mint> struct MultiEval {
    using NP = MultiEval*;
    NP l, r;
    V<Mint> que;
    int sz;
    Poly<Mint> mul;
    MultiEval(const V<Mint>& _que, int off, int _sz) : sz(_sz) {
        if (sz <= 100) {
            que = {_que.begin() + off, _que.begin() + off + sz};
            mul = {{1}};
            for (auto x : que) mul *= {{-x, 1}};
            return;
        }
        l = new MultiEval(_que, off, sz / 2);
        r = new MultiEval(_que, off + sz / 2, sz - sz / 2);
        mul = l->mul * r->mul;
    }
    MultiEval(const V<Mint>& _que) : MultiEval(_que, 0, int(_que.size())) {}
    void query(const Poly<Mint>& _pol, V<Mint>& res) const {
        if (sz <= 100) {
            for (auto x : que) {
                Mint sm = 0, base = 1;
                for (int i = 0; i < _pol.size(); i++) {
                    sm += base * _pol.freq(i);
                    base *= x;
                }
                res.push_back(sm);
            }
            return;
        }
        auto pol = _pol % mul;
        l->query(pol, res);
        r->query(pol, res);
    }
    V<Mint> query(const Poly<Mint>& pol) const {
        V<Mint> res;
        query(pol, res);
        return res;
    }
};

template <class Mint> Poly<Mint> berlekamp_massey(const V<Mint>& s) {
    int n = int(s.size());
    V<Mint> b = {Mint(-1)}, c = {Mint(-1)};
    Mint y = Mint(1);
    for (int ed = 1; ed <= n; ed++) {
        int l = int(c.size()), m = int(b.size());
        Mint x = 0;
        for (int i = 0; i < l; i++) {
            x += c[i] * s[ed - l + i];
        }
        b.push_back(0);
        m++;
        if (!x) continue;
        Mint freq = x / y;
        if (l < m) {
            // use b
            auto tmp = c;
            c.insert(begin(c), m - l, Mint(0));
            for (int i = 0; i < m; i++) {
                c[m - 1 - i] -= freq * b[m - 1 - i];
            }
            b = tmp;
            y = x;
        } else {
            // use c
            for (int i = 0; i < m; i++) {
                c[l - 1 - i] -= freq * b[m - 1 - i];
            }
        }
    }
    return c;
}

template <class E, class Mint = decltype(E().f)>
Mint sparse_det(const VV<E>& g) {
    int n = int(g.size());
    if (n == 0) return 1;
    auto rand_v = [&]() {
        V<Mint> res(n);
        for (int i = 0; i < n; i++) {
            res[i] = Mint(global_gen().uniform<int>(1, Mint::get_mod() - 1));
        }
        return res;
    };
    V<Mint> c = rand_v(), l = rand_v(), r = rand_v();
    // l * mat * r
    V<Mint> buf(2 * n);
    for (int fe = 0; fe < 2 * n; fe++) {
        for (int i = 0; i < n; i++) {
            buf[fe] += l[i] * r[i];
        }
        for (int i = 0; i < n; i++) {
            r[i] *= c[i];
        }
        V<Mint> tmp(n);
        for (int i = 0; i < n; i++) {
            for (auto e : g[i]) {
                tmp[i] += r[e.to] * e.f;
            }
        }
        r = tmp;
    }
    auto u = berlekamp_massey(buf);
    if (u.size() != n + 1) return sparse_det(g);
    auto acdet = u.freq(0) * Mint(-1);
    if (n % 2) acdet *= Mint(-1);
    if (!acdet) return 0;
    Mint cdet = 1;
    for (int i = 0; i < n; i++) cdet *= c[i];
    return acdet / cdet;
}
#line 2 "src/math/poly.hpp"

#line 2 "src/util/random.hpp"

#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <cstdint>
#include <numeric>
#include <random>
#include <set>
#include <vector>

struct Random {
  private:
    // Use xoshiro256**
    // Refereces: http://xoshiro.di.unimi.it/xoshiro256starstar.c
    static uint64_t rotl(const uint64_t x, int k) {
        return (x << k) | (x >> (64 - k));
    }

    std::array<uint64_t, 4> s;

    uint64_t next() {
        const uint64_t result_starstar = rotl(s[1] * 5, 7) * 9;

        const uint64_t t = s[1] << 17;

        s[2] ^= s[0];
        s[3] ^= s[1];
        s[1] ^= s[2];
        s[0] ^= s[3];

        s[2] ^= t;

        s[3] = rotl(s[3], 45);

        return result_starstar;
    }

    // random choice from [0, upper]
    uint64_t next(uint64_t upper) {
        if (!(upper & (upper + 1))) {
            // b = 00..0011..11
            return next() & upper;
        }
        int lg = 63 - __builtin_clzll(upper);
        uint64_t mask = (lg == 63) ? ~0ULL : (1ULL << (lg + 1)) - 1;
        while (true) {
            uint64_t r = next() & mask;
            if (r <= upper) return r;
        }
    }

  public:
    Random(uint64_t seed = 0) {
        // Use splitmix64
        // Reference: http://xoshiro.di.unimi.it/splitmix64.c
        for (int i = 0; i < 4; i++) {
            uint64_t z = (seed += 0x9e3779b97f4a7c15);
            z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
            z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
            s[i] = z ^ (z >> 31);
        }
    }

    // random choice from [lower, upper]
    template <class T> T uniform(T lower, T upper) {
        assert(lower <= upper);
        return T(lower + next(uint64_t(upper - lower)));
    }

    bool uniform_bool() { return uniform(0, 1) == 1; }

    double uniform01() {
        uint64_t v = next(1ULL << 63);
        return double(v) / (1ULL << 63);
    }

    template <class T> std::pair<T, T> uniform_pair(T lower, T upper) {
        assert(upper - lower >= 1);
        T a, b;
        do {
            a = uniform(lower, upper);
            b = uniform(lower, upper);
        } while (a == b);
        if (a > b) std::swap(a, b);
        return {a, b};
    }

    // generate random lower string that length = n
    std::string lower_string(size_t n) {
        std::string res = "";
        for (size_t i = 0; i < n; i++) {
            res += uniform('a', 'z');
        }
        return res;
    }

    // random shuffle
    template <class Iter> void shuffle(Iter first, Iter last) {
        if (first == last) return;
        // Reference and edit:
        // cpprefjp - C++日本語リファレンス
        // (https://cpprefjp.github.io/reference/algorithm/shuffle.html)
        int len = 1;
        for (auto it = first + 1; it != last; it++) {
            len++;
            int j = uniform(0, len - 1);
            if (j != len - 1) iter_swap(it, first + j);
        }
    }

    // generate random permutation that length = n
    template <class T> std::vector<T> perm(size_t n) {
        std::vector<T> idx(n);
        std::iota(idx.begin(), idx.end(), T(0));
        shuffle(idx.begin(), idx.end());
        return idx;
    }

    template <class T> std::vector<T> choice(size_t n, T lower, T upper) {
        assert(n <= upper - lower + 1);
        std::set<T> res;
        while (res.size() < n) res.insert(uniform(lower, upper));
        return {res.begin(), res.end()};
    }
};
Random& global_gen() {
    static Random gen;
    return gen;
}
Random get_random_gen() {
    return Random(chrono::steady_clock::now().time_since_epoch().count());
}
Random& global_runtime_gen() {
    static Random gen = get_random_gen();
    return gen;
}
#line 4 "src/math/poly.hpp"
template <class D> struct Poly {
    V<D> v;
    Poly(const V<D>& _v = {}) : v(_v) { shrink(); }
    void shrink() {
        while (v.size() && !v.back()) v.pop_back();
    }

    int size() const { return int(v.size()); }
    D freq(int p) const { return (p < size()) ? v[p] : D(0); }

    Poly operator+(const Poly& r) const {
        auto n = max(size(), r.size());
        V<D> res(n);
        for (int i = 0; i < n; i++) res[i] = freq(i) + r.freq(i);
        return res;
    }
    Poly operator-(const Poly& r) const {
        int n = max(size(), r.size());
        V<D> res(n);
        for (int i = 0; i < n; i++) res[i] = freq(i) - r.freq(i);
        return res;
    }
    Poly operator*(const Poly& r) const { return {multiply(v, r.v)}; }
    Poly operator*(const D& r) const {
        int n = size();
        V<D> res(n);
        for (int i = 0; i < n; i++) res[i] = v[i] * r;
        return res;
    }
    Poly operator/(const D &r) const{
        return *this * r.inv();
    }
    Poly operator/(const Poly& r) const {
        if (size() < r.size()) return {{}};
        int n = size() - r.size() + 1;
        return (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
    }
    Poly operator%(const Poly& r) const { return *this - *this / r * r; }
    Poly operator<<(int s) const {
        V<D> res(size() + s);
        for (int i = 0; i < size(); i++) res[i + s] = v[i];
        return res;
    }
    Poly operator>>(int s) const {
        if (size() <= s) return Poly();
        V<D> res(size() - s);
        for (int i = 0; i < size() - s; i++) res[i] = v[i + s];
        return res;
    }
    Poly& operator+=(const Poly& r) { return *this = *this + r; }
    Poly& operator-=(const Poly& r) { return *this = *this - r; }
    Poly& operator*=(const Poly& r) { return *this = *this * r; }
    Poly& operator*=(const D& r) { return *this = *this * r; }
    Poly& operator/=(const Poly& r) { return *this = *this / r; }
    Poly& operator/=(const D &r) {return *this = *this/r;}
    Poly& operator%=(const Poly& r) { return *this = *this % r; }
    Poly& operator<<=(const size_t& n) { return *this = *this << n; }
    Poly& operator>>=(const size_t& n) { return *this = *this >> n; }

    Poly pre(int le) const {
        return {{v.begin(), v.begin() + min(size(), le)}};
    }
    Poly rev(int n = -1) const {
        V<D> res = v;
        if (n != -1) res.resize(n);
        reverse(res.begin(), res.end());
        return res;
    }
    Poly diff() const {
        V<D> res(max(0, size() - 1));
        for (int i = 1; i < size(); i++) res[i - 1] = freq(i) * i;
        return res;
    }
    Poly inte() const {
        V<D> res(size() + 1);
        for (int i = 0; i < size(); i++) res[i + 1] = freq(i) / (i + 1);
        return res;
    }

    // f * f.inv() = 1 + g(x)x^m
    Poly inv(int m) const {
        Poly res = Poly({D(1) / freq(0)});
        for (int i = 1; i < m; i *= 2) {
            res = (res * D(2) - res * res * pre(2 * i)).pre(2 * i);
        }
        return res.pre(m);
    }
    Poly exp(int n) const {
        assert(freq(0) == 0);
        Poly f({1}), g({1});
        for (int i = 1; i < n; i *= 2) {
            g = (g * 2 - f * g * g).pre(i);
            Poly q = diff().pre(i - 1);
            Poly w = (q + g * (f.diff() - f * q)).pre(2 * i - 1);
            f = (f + f * (*this - w.inte()).pre(2 * i)).pre(2 * i);
        }
        return f.pre(n);
    }
    Poly log(int n) const {
        assert(freq(0) == 1);
        auto f = pre(n);
        return (f.diff() * f.inv(n - 1)).pre(n - 1).inte();
    }
    Poly sqrt(int n) const {
        assert(freq(0) == 1);
        Poly f = pre(n + 1);
        Poly g({1});
        for (int i = 1; i < n; i *= 2) {
            g = (g + f.pre(2 * i) * g.inv(2 * i)) / 2;
        }
        return g.pre(n + 1);
    }

    Poly pow_mod(ll n, const Poly& mod) {
        Poly x = *this, r = {{1}};
        while (n) {
            if (n & 1) r = r * x % mod;
            x = x * x % mod;
            n >>= 1;
        }
        return r;
    }

    friend ostream& operator<<(ostream& os, const Poly& p) {
        if (p.size() == 0) return os << "0";
        for (auto i = 0; i < p.size(); i++) {
            if (p.v[i]) {
                os << p.v[i] << "x^" << i;
                if (i != p.size() - 1) os << "+";
            }
        }
        return os;
    }
};

template <class Mint> struct MultiEval {
    using NP = MultiEval*;
    NP l, r;
    V<Mint> que;
    int sz;
    Poly<Mint> mul;
    MultiEval(const V<Mint>& _que, int off, int _sz) : sz(_sz) {
        if (sz <= 100) {
            que = {_que.begin() + off, _que.begin() + off + sz};
            mul = {{1}};
            for (auto x : que) mul *= {{-x, 1}};
            return;
        }
        l = new MultiEval(_que, off, sz / 2);
        r = new MultiEval(_que, off + sz / 2, sz - sz / 2);
        mul = l->mul * r->mul;
    }
    MultiEval(const V<Mint>& _que) : MultiEval(_que, 0, int(_que.size())) {}
    void query(const Poly<Mint>& _pol, V<Mint>& res) const {
        if (sz <= 100) {
            for (auto x : que) {
                Mint sm = 0, base = 1;
                for (int i = 0; i < _pol.size(); i++) {
                    sm += base * _pol.freq(i);
                    base *= x;
                }
                res.push_back(sm);
            }
            return;
        }
        auto pol = _pol % mul;
        l->query(pol, res);
        r->query(pol, res);
    }
    V<Mint> query(const Poly<Mint>& pol) const {
        V<Mint> res;
        query(pol, res);
        return res;
    }
};

template <class Mint> Poly<Mint> berlekamp_massey(const V<Mint>& s) {
    int n = int(s.size());
    V<Mint> b = {Mint(-1)}, c = {Mint(-1)};
    Mint y = Mint(1);
    for (int ed = 1; ed <= n; ed++) {
        int l = int(c.size()), m = int(b.size());
        Mint x = 0;
        for (int i = 0; i < l; i++) {
            x += c[i] * s[ed - l + i];
        }
        b.push_back(0);
        m++;
        if (!x) continue;
        Mint freq = x / y;
        if (l < m) {
            // use b
            auto tmp = c;
            c.insert(begin(c), m - l, Mint(0));
            for (int i = 0; i < m; i++) {
                c[m - 1 - i] -= freq * b[m - 1 - i];
            }
            b = tmp;
            y = x;
        } else {
            // use c
            for (int i = 0; i < m; i++) {
                c[l - 1 - i] -= freq * b[m - 1 - i];
            }
        }
    }
    return c;
}

template <class E, class Mint = decltype(E().f)>
Mint sparse_det(const VV<E>& g) {
    int n = int(g.size());
    if (n == 0) return 1;
    auto rand_v = [&]() {
        V<Mint> res(n);
        for (int i = 0; i < n; i++) {
            res[i] = Mint(global_gen().uniform<int>(1, Mint::get_mod() - 1));
        }
        return res;
    };
    V<Mint> c = rand_v(), l = rand_v(), r = rand_v();
    // l * mat * r
    V<Mint> buf(2 * n);
    for (int fe = 0; fe < 2 * n; fe++) {
        for (int i = 0; i < n; i++) {
            buf[fe] += l[i] * r[i];
        }
        for (int i = 0; i < n; i++) {
            r[i] *= c[i];
        }
        V<Mint> tmp(n);
        for (int i = 0; i < n; i++) {
            for (auto e : g[i]) {
                tmp[i] += r[e.to] * e.f;
            }
        }
        r = tmp;
    }
    auto u = berlekamp_massey(buf);
    if (u.size() != n + 1) return sparse_det(g);
    auto acdet = u.freq(0) * Mint(-1);
    if (n % 2) acdet *= Mint(-1);
    if (!acdet) return 0;
    Mint cdet = 1;
    for (int i = 0; i < n; i++) cdet *= c[i];
    return acdet / cdet;
}
Back to top page